Localized Multiple Kernel learning for Anomaly Detection: One-class Classification
نویسندگان
چکیده
منابع مشابه
Online Learning with Regularized Kernel for One-class Classification
This paper presents an online learning with regularized kernel based one-class extreme learning machine (ELM) classifier and is referred as “online RK-OC-ELM”. The baseline kernel hyperplane model considers whole data in a single chunk with regularized ELM approach for offline learning in case of one-class classification (OCC). Further, the basic hyper plane model is adapted in an online fashio...
متن کاملBilinear Formulated Multiple Kernel Learning for Multi-class Classification Problem
In this paper, we propose a method of multiple kernel learning (MKL) to inherently deal with multi-class classification problems. The performances of kernel-based classification methods depend on the employed kernel functions, and it is difficult to predefine the optimal kernel. In the framework of MKL, multiple types of kernel functions are linearly integrated with optimizing the weights for t...
متن کاملBayesian Localized Multiple Kernel Learning
Multiple kernel learning approaches form a set of techniques for performing classification that can easily combine information from multiple data sources, e.g., by adding or multiplying kernels. Most methods, however, are limited by their assumption of a per-view kernel weighting. For many problems, the set of features important for discriminating between examples can vary locally. As a consequ...
متن کاملSteganography Anomaly Detection Using Simple One-Class Classification
There are several security issues tied to multimedia when implementing the various applications in the cellular phone and wireless industry. One primary concern is the potential ease of implementing a steganography system. Traditionally, the only mechanism to embed information into a media file has been with a desktop computer. However, as the cellular phone and wireless industry matures, it be...
متن کاملKernel Whitening for One-Class Classification
In one-class classification one tries to describe a class of target data and to distinguish it from all other possible outlier objects. Obvious applications are areas where outliers are very diverse or very difficult or expensive to measure, such as in machine diagnostics or in medical applications. In order to have a good distinction between the target objects and the outliers, good representa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2019
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2018.11.030